The tikzquests package
A parametric questions’ repository
Version 2.0

Alceu Frigeri*

October 2025

Abstract

This is a framework for building parametric questions’ repositories, which can be further used to
construct parametric questions for exams. Unlike other packages (for instance exam, exam-n or exam-1ite)
this doesn’t try to enforce any pre-defined presentation format, focusing only on how to set a repository

and use it.

Contents

1 Introduction 1

2 Package Options 2

3 Repositories 2

4 Questions 2
4.1 Defining a Question 3
4.2 Using a Question e 3

5 Parameters as keys and auxiliary macros. 4
5.1 Assigning a value to pre-defined keys L. 4
5.2 Assigning a valuetonew keys Lo 4
5.3 Using a parameter key L 5

6 Examples of Use 5
6.1 Package Options L 5
6.2 A More Complete Example 5
6.3 Listing all Questions L L 8

1 Introduction

One recurring problem when typesetting exams, specially in Engineering fields, is the need to have
parameterized questions, specially parameterized schematics used in exam’s questions. The intent
of this is to allow the creation of such repositories (one or more) with ’easily’ parameterized text
and/or graphic (tikz) questions, without enforcing any style/format whatsoever, leaving it to the
end user.

The package offers

e A set of commands to create and use repositories,
o A set of commands to create and use 'questions’ (code snippets) in a repository,

¢ Question’s customization, parametrization, based on keys and a set of associated macros.

*https://github.com/alceu-frigeri/tikzquests

xtrakeys
xtraidx

no defs

old settings

no alias

in review

undef color

\defRepository
\SelectRepository

updated: 2025/10/01

2 Package Options

This allows to expand the set of pre-defined (keys) keys. See 5.
This allows to expand the set of pre-defined (keys) indexes per key. See 5.

(default: false). This changes the parametrization strategy suppressing the creation of “keys
commands”.

(default: false). This changes the assignment behaviour when no defs is set. See 5

(default: false). This suppress the creation of Question’s aliases (see 4.1), handy when one wants
to reduce the 'noise’ when listing all currently known Questions.

(default: false). When using a question (see 4.2), the question’s associated remarks and annotations
will be printed as well, if any.

(default: red). This sets the color used to indicated the use of a non defined parameter. See 5.

3 Repositories

Questions are stored in repositories. Per default there is one such repository, named default. Each
repository has two sub-sets (a) a non-starred sub-set and (b) a starred sub-set. The rational behind
it being to separate text part (e.g. the question enunciate) from graphics part. It is suggested
(but not enforced) to store the text part in the starred sub-set and the graphics part (tikz) in the
non-starred sub-set. A repository can have an “unlimited” set of questions.
Note: All commands defined in 4.2 can use both subsets, except \QuestionsList
which assumes the non-starred sub-set has only text code, whilst the starred sub-set
has a tikz commands.

\defRepository* {(new-repository)}
\SelectRepository {(repository)}

\defRepository creates a new Repository, (new-repository). The starred version also switches to it,
making it the “current default”. \SelectRepository activates (repository) as the “current default”
one.

It is possible to construct a tree of related repositories by using a slash, “/”, like “repoA”, “re-
poA /subA”, “repoA/subB”, “repoA/subC”, which can be handy when listing the questions of a
repository, see 4.2.

Note: About repository’s names: It can be almost anything, the name can contain
strings normally not allowed in a macro name, like spaces, dots, two-dots and so
on. an important exception the backslash is still an active character, meaning that if
someone typesets \XYZ as a repository, the value stored in \XYZ will be used (if \XYZ
isn’t defined this might raise a rather cryptic WTEX 2¢ error).

Note: Do not create a repository with an ending slash, like “repoName/”. Given
the way sub-repositories are defined, it will render impossible to list this repository
questions, see 4.2

Note: A warning is raised if the (deprecated) \defNewRepository is called. Use
\defRepository instead.

Note: When creating a new repository, a warning is raised in case (new-repository)
already exists. When Selecting a repository, an error is raised if (repository) doesn’t
exists.

4 Questions

As said, for each repository there are two sub-sets of questions (code snippets): starred ones,
though for text (which may include INTEX 2¢ commands) and non starred ones though for graphics
(for instance, to be used inside a tikz environment).

Since the code re-factoring (version 1.4), the commands \defQuestion, \defQuestionAlias,
\Question, \tikzQuestion and \ftikzQuestion use/refer to the “non-starred” sub-set, while the
commands \defQuestion*, \defQuestionAlias*, \Question#*, \tikzQuestion* and \ftikzQuestion*
use/refer to the “starred” sub-set.

All questions can be parameterized (see 5 below) with a set of predefined keys.

\defQuestion

\defQuestionAlias

updated:

2025/04/25

\Question
\tikzQuestion
\ftikzQuestion

updated:

2025/10/01

4.1 Defining a Question

\defQuestion [(repository)] {(quest-name)} {(code)} [(remarks)]
\defQuestion* [(repository)] {(quest-name)} {(code)} [(remarks)]

\defQuestion creates a new Question in (repository) (per default using the “current active” one).
(quest-name) will be the associated question key, for later reference. (code) will be the correspond-
ing Question’s code. (remarks) is just a small note associated with the Question. It won’t be
normally used/typeset, except if the in review option is being used, or when using the command
\QuestionsList.

The starred version \defQuestion* will create the question in the “starred sub-set”, whilst the non
starred one \defQuestion will create the question in the “non starred sub-set”.

Note: Since the code re-factoring (2025/10/01) all commands in 4.2 can used both
sets of questions, with one exception: \QuestionsList witch assumes that the starred
set stores text and the non-starred stores tikz graphics.

Note: About question’s names: It can be almost anything, the name can contain
strings normally not allowed in a macro name, like spaces, dots, two-dots and so on,
including backslashes, meaning that if someone typesets \XYZ as a question name,
\XYZ will be it’s name: a backslash isn’t an active character anymore and one can’t
use macros when defining a question’s name.

Note: An error is raised if (repository) doesn’t exist. In case the (quest-name)
already exists, it’s code is silently replaced by the new one.

\defQuestionAlias [(dst-repository)] {(quest-alias)} [(org-repository)] {(quest-name)}
\defQuestionAlias* [(dst-repository)] {{(quest-alias)} [(org-repository)] {(quest-name)}

\defQuestionAlias creates an alias, (quest-alias) (at (dst-repository)) for a given question, (quest-name)
(from (org-repository)). The current active repository is used if none is specified. If only
(dst-repository) is specified, the same repository is used for (org-repository). As with \defQuestion,

the “star” refers the sub-set being used.

Note: Be aware that this will copy the question definition at the alias creation point.

Note: An error is raised if (dst-repository), (org-repository) or (quest-name)
doesn’t exist.

4.2 Using a Question

\Question [(repository)] {(quest-name)} [(key=value list)] <(annotation)>

\tikzQuestion ((scale)) [(repository)] {(quest-name)} [(key=value list)] <(annotation)>
\ftikzQuestion ((scale)) [(repository)] {(quest-name)} [(key=value list)] <(annotation)>
\Question* [(repository)] {(quest-name)} [(key=value list)] <(annotation)>
\tikzQuestion* ((scale)) [(repository)] {(quest-name)} [(key=value list)] <(annotation)>
\ftikzQuestion* ((scale)) [(repository)] {(quest-name)} [(key=value list)] <(annotation)>

Those are the main commands to display a question. The star/non-star defines which sub-set will
be used. \Question is the “raw” base variant, the question’s code will be used, as is, in a local
group. The starred version \Question* is meant for text questions, whilst the non-starred version
\Question is meant for the case one wants to use a different graphic engine (for instance SVG,
instead of the tikz as in \tikzQuestion). Note that this is just a suggestion, and not enforced.
The \tikzQuestion will display the question’s code inside a tikzpicture environment. And then,
\ftikzQuestion will further nest the code inside a center environment (preparing it to be used
inside a floating environment).

The (annotation) will only be added if, and only if, the in review option is being used. The (scale)
factor, when present, is related to the current \textwidth, so a factor of 0.25 will scale the width
of the question to 1/4th of the text width. The (key=value list) is a set of keys, see 5 below.

Note: Besides the key/parameters from 5 there is a special key tikz keys which can
be used to pass tikz specific parameters for the underlying environment, this key is
ignored when using \Question or \Questionx.

Warning: A Warning is raised if one uses the old (deprecated) \rawtikzQuestion
or \textQuestion. Use \Question instead.

Note: An error is raised if (repository) or (quest-name) doesn’t exist.

\QuestionsFmtList \QuestionsFmtList [(repositories list)] {(star-cmd)} {(nonstar-cmd)}

\QuestionsList

new:

2025/10/03

\QuestionsList [(repositories list)]

(repositories list) is a comma separated list of repositories. For each repository, all Questions will
be typeset in a ’describe’ alike environment. If no (repositories list) is supplied, all repositories
will be listed.

(star-cmd) will be used to typeset a “star” question, it can be any command that accepts an optional
(repository) name and a mandatory (quest-name), like \starcmd [(repository)] {(quest-name)}.
Likewise (nonstar-cmd) will be used to typeset a “non star” question (assuming the same syntax).
\QuestionsList [repo-list] is a shortcut for

\QuestionsFmtList [repo-list]{\Question *}{\tikzQuestion (0.35)}

Note: If a (repositories list)’s term finishes with a slash, “/”, it will be treated
as a family of repositories and all sub-repositories will be listed too.

Note: An error is raised if any repository in (repositories list) doesn’t exist. To
reduce the clutter (and number of questions listed) one should consider the use of the
no alias option.

5 Parameters as keys and auxiliary macros.

By default a set of keys and macros is defined as follow: (ID)(idx). The predefined range of (IDs)
being B, L, C, X, Y, Z, K, T, Q, EQ, V and I. The predefined range of (idx) spans from a, b, ¢ up to z,
aa, ab, ac up to az and, finally, ba, bb, bc up to bz.
Note: That means, one gets to use keys as, for example, Ra=200, Lca=500, Kbe=230
and so on. For each of the key’s (ID) there is (per default) a set of 3x26 keys. If one
adds some 3 other (idx) then one gets 6x26 keys per (ID).
Note: The (ID) can be extended with the xtrakeys option. For example with
xtrakeys={NN , B}, each extra key will add 3x26 keys (per default).
Note: The (idx) can be extended with the xtraidx option. For instance with
xtraidx={f , g} one gets fa, fb, fc up to fz, ga, gb, gc up to gz as well, a x26
set per extra idx.

Unless the no defs option is defined, a corresponding macro (with the same name) will also be
defined. For example, there is a macro \Ra associated with the key Ra. All those macros/keys are
initialized as follow (math mode) \ensuremath {<ID>_{<idx>}}, resulting in ID;4,. So, for example,
the key Rab, which can be accessed with the macro \Rab, will be predefined as Ry, Lca (\Lca) will
be predefined as L.,, and so on.

The idea is that, when using the commands in 4.2, if one doesn’t specify a (key=value list),
the default values will be en force, and all one has to do (to change those values) is to set said list,
which doesn’t have to be complete, non assigned keys will keep their default value.

Besides those default keys, one can set and use any key at will (in (key=value list)) non-existing
keys will be created “on the fly” with the given name as the default value.

5.1 Assigning a value to pre-defined keys

In fact, with each and every predefined key there are 3 ways to assign a value to it (key) =value,
(key*) =value and (key raw)=value. The difference being that (key raw) will assign whatever
code/value to the key (and associated macro), (key*) will assign the code/value inside a math
environment.
warning: (key)=value (without any specifier) will be the same as (key*) (default).
But, if the options no defs and old settings are used, it will be equivalent to (key
raw).

5.2 Assigning a value to new keys

When using (key) =value, if the (key) isn’t one of the pre-defined ones, then value will be assigned
“as is” to (key).
warning: Note that, in this case there are no (key*) or (key raw) equivalents.

5.3 Using a parameter key

When defining the (code) of a question (see 4.1) one has two options to recover a key’s value:
o A macro named after the key itself (in case of the default keys, see above) and, or

e the \QuestVal command which allows to recover the value of both the default keys, as well as
the ones defined on the fly.

Warning: If the option no defs is defined, the only option to recover a key’s value
is \QuestVal. Users are advised to choose a style, and keep it (when starting new
docs).

\QuestVal \QuestVal {(IDidx)}

T \QuestVal {(key)}
This will always recover the value of a key, regardless if the key is one of the pre-defined ones
(in the form (IDidx) or an “on the fly” new one, (key). If the key didn’t get (re)defined with the
(key=value list), it will return the key/parameter default value. In the case of a “on the fly” key,
it will be the key’s name in red (or the color set up with the undef color option, see 2).

6 Examples of Use

6.1 Package Options

Package Options
\usepackage{tikzquests}

This is the default case, in which both \Questval and (for default keys) associated macro name
can be used to retrieve a key/parameter value.
Package Options
\usepackage [xtrakeys={EX,N},xtraidx={f,h},undef color={blue},no defs]{tikzquests}

In this case, one will get the following set of keys

e« Ra, Rb ... Rz, Rab, Rab ... Raz Rfa, Rfb ... Rfz, Rha, Rhb ... Rhz

e all other default sets of keys, plus

e EXa, EXDb ... EXz, EXab, EXab ... EXaz EXfa, EXfb ... EXfz, EXha, EXhb ... EXhz

e Na, Nb ... Nz, Nab, Nab ... Naz Nfa, Nfb ... Nfz, Nha, Nhb ... Nhz

Besides that, the undefined color will be blue and no additional macro will be defined, meaning
that \QuestVal is the only option to retrieve the value of a key/parameter.

Package Options

\usepackage [no alias, in review]{tikzquests}

In this case, no alias will be defined (the command \defQuestionAlias will be ignored), and
when using \tikzQuestion (and similar) the question’s remarks (defined by \defQuestion) and
annotations (from \tikzQuestion) will be printed. The no alias is specially useful when using the
command \QuestionsList.

6.2 A More Complete Example

In the following code, an extra repository will be set (besides the default one) and two questions
(a starred, text, and non starred, graphics) will be defined for each repository.

Defining Questions

% A repository name can be just about anything.
% the star makes sure 'Repo 2' is now the active/default one.
\defRepository*{Repo 2}

% quest names are even more flexible than a repository one
% the star implies this is a text one.
\defQuestion*{Quest A:1}{
In the following circuit, assuming $\beta \approx \QuestVal{Beta}$ and that $V_{be} \approx 0.65V$,
find the value of R_c such that the small signal gain is \QuestVal{Gain}.
}[That would be a question enunciate.]

%% Note the use of the macros \Ra, \Rb, \Rc, \Rd, \Vi, \Vbc and \Vo
\defQuestion[Repo 2]{Elect. 1la}{
\draw
(0,0) coordinate(A) tol[V,invert,1=\Vi] ++(0,3) coordinate(V)
to[R=\Ra] ++(2,0)
to[C] ++(2,0) coordinate(B)
-- ++(1,0) node[npn,anchor=B] (T1){}
(A) —-- (A -| B) coordinate(Ba) to[R=\Rb] (B) to[R=\Rg] ++(0,3) coordinate(C)
(B) nodel[circ]{}
(T1.E) to[R,1=\Rc] (T1.E |- A) -- (A)
(T1.C) tol[R,1_=\Rd] (T1.C |- C) —- (C -| A) -- ++(-2,0) coordinate(X) to[V,1=\Vbc] (X |- A) —-- (
A)
(T1.C) -- ++(1.5,0) nodel[ocirc]{} coordinate(k) tol[open,v=\Vo] (k |- A) nodelocirc]{} -- (A)

}[this is a CircuiTikZ example]

%switching repositories
\SelectRepository{default}

% Note that, since it is a different repository, there is no name crashing.
\defQuestion*{Quest A:1}{
In the following circuit, assuming $\beta \approx \QuestVal{Betal}$ and that $V_{be} \approx 0.65V$,
find the value of \Rg \ such that the DC level of \Vo \ is equal to \QuestVal{DC level}.
}[Just for the sake of it.]

%% Note the use of the macros \Ra, \Rb, \Rc, \Rd, \Vi, \Vbc and \Vo
\defQuestion{Elect. 1b}{
\draw
(0,0) coordinate(A) tol[V,invert,1=\Vi] ++(0,3) coordinate(V)
to[R=\Ral ++(2,0)
to[C] ++(2,0) coordinate(B)
-- ++(1,0) node[pnp,anchor=B] (T1){}
(A) -- (A -| B) coordinate(Ba) to[R=\Rb] (B) to[R=\Rg] ++(0,3) coordinate(C)
(B) nodelcirc]{}
(T1.C) tolR,1=\Rc] (T1.C |- A) -- (&)
(T1.E) to[R,1_=\Rd] (T1.E |- C) -- (C -| A) -- ++(-2,0) coordinate(X) to[V,1=\Vbc] (X |- A) -- (
p)
(T1.C) -- ++(1.5,0) nodel[ocirc]{} coordinate(k) tol[open,v=\Vo] (k |- A) nodelocirc]{} -- (A)

}[this is a CircuiTikZ example]

Once Questions are defined one can use them, for instance, using just the default parameter’s
values.
Questions Defaults

Choose one of the following two questions:

\begin{enumerate}
\item \Question*[Repo 2]{Quest A:1}<just a last minute note about this>\par
\ftikzQuestion(0.4) [Repo 2]{Elect. 1a}

\item \Question*[default]{Quest A:1}<just for the sake of it...>\par
\ftikzQuestion(0.4) [default]{Elect. 1b}
\end{enumerate}

Choose one of the following two questions:

1. In the following circuit, assuming § ~ Beta and that V;, ~ 0.65V, find the value of R, such
that the small signal gain is Gain.

Vi

2. In the following circuit, assuming 5 ~ Beta and that V;. ~ 0.65V, find the value of R, such
that the DC level of V¢ is equal to DC' level.

R,
(D Vi,

Finally, one can use these same questions, setting it’s parameters:

Questions Using Parameters

Choose one of the following two questions:

\begin{enumerate}
\item \Question*[Repo 2]{Quest A:1}[Beta=200,Gain=4,Ra=50\Omegal<just a last minute note about

this>\par

\ftikzQuestion(0.4) [Repo 2]1{Elect. 1a}[Ra=50\0mega,Rb*=100\0mega,Rg raw=$100\0Omega$,Rc=100\Omega,
Rd=R_c,Vbc=18V,Vi=v_i(t),Vo=v_o(t),tikz keys={thick,red}] ’/%Note the use of the 'tikz keys'
key...

\item \Question*[default]{Quest A:1}[Beta=200,DC level=8V,Rg=R_{bll},Vo=v_o(t)]<just for the sake
of it...>\par
\ftikzQuestion(0.4) [default]{Elect. 1b}[Ra=50\0mega,Rb*=100\0mega,Rg=R_{b1},Rc=100\0mega,Rd=200
\Omega , Vbc=18V,Vi=v_i(t) ,Vo=v_o(t)]
\end{enumerate}

Choose one of the following two questions:

1. In the following circuit, assuming 5 ~ 200 and that V;. =~ 0.65V, find the value of R, such
that the small signal gain is 4.

100€2

5092
ot]

vi(t) 1009

2. In the following circuit, assuming 8 ~ 200 and that V4, ~ 0.65V, find the value of Rp; such
that the DC level of v,(t) is equal to 8V.

509
O

v;(t)

6.3 Listing all Questions

To round it up, using the \QuestionsList (see 4.2):
ETEX Code:

\QuestionsList

One get’s:

Repository: Repo 2

non starred ones - TikZ graphics

o

Vi

Elect. 1la

Remarks: this is a CircuiTikZ example

starred ones - text/TEX

In the following circuit, assuming &~ Beta and that Vj. ~ 0.65V/,
Quest A:1 find the value of R, such that the small signal gain is Gain.

Remarks: That would be a question enunciate.

Repository: default

non starred ones - TikZ graphics

R,

Elect. 1b
Vi,
Remarks: this is a CircuiTikZ example
starred ones - text/TEX
In the following circuit, assuming g ~ Beta and that V. ~ 0.65V,
Quest A:l find the value of R, such that the DC level of Vy, is equal to DC

level.

Remarks: Just for the sake of it.

	Introduction
	Package Options
	Repositories
	Questions
	Defining a Question
	Using a Question

	Parameters as keys and auxiliary macros.
	Assigning a value to pre-defined keys
	Assigning a value to new keys
	Using a parameter key

	Examples of Use
	Package Options
	A More Complete Example
	Listing all Questions

